
Distributed AH-Tree Based Index Technology

for Multi-channel Wireless Data Broadcast�

Yongtian Yang1, Xiaofeng Gao1,��, Xin Lu2, Jiaofei Zhong3, and Guihai Chen1

1 Dept. of Computer Science and Engineering, Shanghai Jiao Tong Univ., China
2 School of Software, Shanghai Jiao Tong Univ., China

3 Dept. of Mathematics and Computer Science, Univ. of Central Missouri, USA

Abstract. Alphabetic Huffman Tree (AH-Tree) is an appropriate data
structure to index data set with skewed access frequencies, which fits
the feature of web-based wireless data broadcast service to a mass num-
ber of mobile clients. In this paper we solve a long-time open question
to construct an arbitrary k-ary AH-Tree with Hu-Tucker algorithm [1]
by dynamic programming, whose time complexity is O(kn2), where n
is cardinality of the data set. We then build a distributed AH-Tree in-
dex sequence with a special control-table shrinking technique. Next, we
introduce a pyramid index allocation method, which is scalable to any
available broadcast channel. We prove the correctness of our algorithm,
analyze the time complexity of tree-construction process, and compare
our design with B+-Tree index by numerical experiments. Both mathe-
matical analysis and simulation results prove the efficiency of our design.
To the best of our knowledge, we are the first to propose a detailed, fast,
and distributed k-ary AH-Tree index with allocation protocol, which has
both theoretical and practical significance in this area.

Keywords: Huffman Tree, Distributed Index, Data Broadcast.

1 Introduction

Wireless data broadcast is an efficient data dissemination technology to a mass
number of mobile clients with battery-constraint portable wireless devices (i.e.,
mobile phones, smart phones, and PDAs). Due to the nature of wireless commu-
nication, instead of point-to-point query-reply mode, a server broadcasts public
information like traffic conditions, live TV streams, weather forecasts, and tourist
services, etc., over multiple channels periodically. Each mobile client can access
onto the channel, wait for the required data items, and download its required
data packet sequence each at a time slot.

Intuitively, the criteria to evaluate the performance of a wireless data broad-
cast system are the downloading time and energy consumption of mobile devices.

� This work has been supported in part by the National Natural Science Foun-
dation of China (Grant numbers 61073152, 61133006, and 61202024), China 973
project (2012CB316200), Shanghai Educational Development Foundation (Chen-
guang Grant No.12CG09), and the Natural Science Foundation of Shanghai (Grant
No.12ZR1445000).

�� Corresponding author.

W. Meng et al. (Eds.): DASFAA 2013, Part I, LNCS 7825, pp. 176–192, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Distributed AH-Tree Based Index Technology 177

Correspondingly, access latency and tuning time are two widely accepted system
evaluation standards. The former denotes the time interval from when a client
sends a request to the time when it receives the required datum, while the latter
denotes the activating time of the mobile device during data retrieval process.

Indexing technology is one of the most effective methods to reduce tuning
time. Each mobile device has two modes: active mode and doze mode. Its energy
consumption during active mode is far greater than that in doze mode. Indices
help to reduce the active time of a mobile device significantly. Clients can follow
the direction of indices on broadcasting channels, turn off during the waiting
period, and turn on again right before the required data item appears.

There have been a lot of works discussing efficient indexing schemes, which
can be classified into three categories: hashing-based indexing [2], tree-based
indexing (e.g., B+ tree [3], Huffman tree [4]), and table-based indexing (e.g.,
exponential index [5]). Among them, tree-based indices are the most widely
implemented structures according to their easy-searching and fast-constructing
characteristics. Additionally, researchers prefer to choose a balanced tree as a
base for their index design, since it is easier to control the tree height and bound
the index size to avoid large increase of access latency.

However, data broadcast system serves mobile clients with hundreds or thou-
sands of data items, whose visiting frequencies vary hugely according to the
empirical statistics of human behavior with preference difference. Based on the
investigation of website popularity [6], we find that a few data items have very
high popularity; a medium number of data items have middle-of-the-road vis-
iting frequencies; while a huge number of data items actually have very low
preference. Such phenomenon implies that balanced tree is probably not an ap-
propriate index structure for web service since each searching path has similar
length, bringing longer tuning time on average.

To overcome the aforementioned shortcoming, the Alphabet Huffman Tree
(AH-Tree) is a good choice. In a typical AH-Tree, the higher the frequency of a
data item, the shorter the path from root to the corresponding leaf index. Many
literatures have studied AH-Tree index during the past two decades. In [1], Hu
and Tucker first proposed a binary AH-Tree algorithm with time complexity
O(n log n), where n is the size of data items. Their design is based on a com-
plex queue technology, which cannot be directly extended to construct k-ary
AH-Tree with arbitrary k [7]. Later, Shivakumar et al. [8] extended Hu-Tucker
Algorithm into k-ary AH-Tree, and first implemented it as indices to broadcast
environment. Nevertheless, they did not describe the algorithm clearly. They
only mentioned a skeleton of how to build a k-ary AH-Tree, lack of specification
of internal node construction with k branches. The time complexity of such de-
sign would be high up to O(n3) if we directly follow their description without
creating any particular queue structure, which is impractical for real-world ap-
plications. Similarly, [4], [9], and [10] discussed AH-Tree index for data broadcast
problem respectively, none of which provided complete tree-construction process
with time complexity analysis. They only gave simple explanation according to

178 Y. Yang et al.

the description in [8], almost in the same manner. Therefore, how to construct
an arbitrary k-ary AH-Tree by Hu-Tucker algorithm remains an open problem.

Additionally, researchers tended to modify the index tree into a distributed in-
dex sequence to improve the performance [3,10,11]. This scheme relies on the use
of control table. However, we found that the control table also results in overhead
in space, which becomes an unneglectable factor as we found half of the control
table is redundant. Moreover, the control table contains as much redundancy as
the useful information. How to eliminate these redundancy becomes crucial.

In this paper, we propose an efficient AH-Tree construction with the help of
dynamic programming. Our algorithm can build arbitrary k-ary AH-Tree in-
dex with bounded tree height in O(kn2) time. We then modify this tree into a
distributed index sequence with control table design to further reduce the search-
ing steps. Considering the influence of control table size, we further propose a
general and effective scheme to eliminate redundant entries in control tables to
reduce the overall index packet length, which save almost 50% of the storage.
Finally, we use the dynamic pyramid scheme for index and data allocation. We
prove the correctness and complexity of our design theoretically and illustrate
the performance of the broadcast system by numerical experiments. Both theo-
retical proofs and simulation results validate the efficiency of our design. To the
best of our knowledge, we are the first to propose the detailed design for k-ary
Hu-Tucker algorithm with time complexity analysis. Our design does not rely on
any special data structure and queue design, which can be easily implemented in
any practical system. The simulation results show that our design gains signifi-
cant growth regard to skew distributed data. However, it does not over perform
B-Tree with regard to uniform distribution [12].

The rest of this paper is organized as follows. Section 2 summarizes the re-
lated work in this research area. Section 3 illustrates the problem formulation and
the architecture of broadcast system. In Sec. 4 we introduce the dynamic pro-
gramming to construct k-ary AH-Tree index and provide the correctness proofs,
while in Sec. 5 we complete the process to build a distributed index sequence
with control tables. Section 6 describes the index allocation method. In Sec. 7
we compare our design with the latest work in [12] and prove the efficiency of
our construction. Finally, Section 8 gives conclusion and future works.

2 Related Works

The key research topics in wireless data broadcast are basically focusing on how
to deign index structures and how to allocate data onto channels, in order to
reduce access latency and tuning time [13].

A series of research works deal with data scheduling problem to decrease access
latency, without implementing indexing technology [14]. As a result, the tuning
time is as long as the access latency, which still leads to high power consumption
for mobile devices.

Traditional disk-based indexing techniques have been modified to meet the re-
quirement of data broadcast systems, which can be classified into three categories:
hashing-based [2], tree-based (e.g., Huffman tree [4]), and table-based (e.g., ex-

Distributed AH-Tree Based Index Technology 179

ponential index [5]) schemes. Hashing-based schemes use hash functions to dis-
tribute data onto channels. For instance, Yao et al. [2] proposed MHash to facil-
itate skewed access probabilities and reduce access latency. Table-based schemes
include exponential index proposed by Xu et al. [5], which shares links in differ-
ent search tables and allows users to start searching at any index node. However,
this scheme may not perform well under non-uniform access probabilities. Tree-
based schemes are sometimes faster to design and easier to maintain, thus achiev-
ing more attentions. One common tree-based index, i.e. B+-tree distributed index
(BTD) was extended to satisfy different system requirements. Gao et al. [11] re-
designed BTD and built a complete multi-channel broadcasting system with non-
uniform data access probabilities and unequal data sizes.

When it comes to multi-channel data broadcasting, how to allocate index
and data will produce heavy impact on the performance of each scheme. A
certain allocation method could be helpful to a specific index structure, but at
the same time it might reduce the efficiency of another index scheme. Several
works [10,15] deal with data allocation for multi-channel data broadcast. One
work [16] proposed an index allocation method named TMBT, which creates a
virtual BTD for each data channel and multiplexes them on the index channel.

Huffman tree is a skewed index tree that takes into account the data access
probability, where more popular data have shorter search paths from the root of
the tree [8]. However, most existing works discussed Huffman tree for a certain
data type with special constraints and features. Recently, Zhong et al. [9] pro-
posed a uniform AH-Tree indexing scheme to satisfy all possible environments.

Based on the observation that the previous schemes can be further improved,
we propose a novel AH-Tree based indexing approach under multi-channel en-
vironment, where data items have different access probabilities. Our scheme is
further refined to minimize both average access latency and tuning time, while
the performance compared to other related schemes is also provided. Simulation
results confirm the efficiency of our scheme.

3 Problem Formulation and System Architecture

We consider multi-channel wireless data broadcast with a server and numbers
of clients. The server first retrieves data from its local database and then calls
the Index Generator modular to index the data. Next, the Channel Allocation
modular allocates channels to data and index. We take index-data separation
mode in this paper to reduce the possible switches among channels. After that,
the server periodically broadcasts data and index sequences in a fixed range
over wireless channels. Clients can access the data at anytime by tuning onto the
channels. In this paper, we focus on Index Generator and Channel Allocator. We
propose distributed AH-Tree based index sequence in Index Generator modular
and pyramid index allocation scheme in the Channel Allocation modular.

Let D = {d1, d2, . . . , dt} be the data set to broadcast, where t is the number
of data item. Associated with D, P = {p1, p2, . . . , pt} is the access frequency set,
where pi is the access frequency of di. Also, since each di may have different size,
we use si, measured by KB, to represent the size of di and S = {s1, s2, . . . , st},

180 Y. Yang et al.

There are A = m + n channels in the system. We assign m channels to the
data and n channels to the index. The channel set is C = {C1, C2, . . . , CA}.

For clarity, we summarize the symbols with their meanings in Table 1. Some
of them will be described in the following sections.

Table 1. Symbol Description

Sym Description Sym Description

D Data set. D = {d1, · · · , dt} C Channels. C = {C1, · · · , CA}
L Level of T l Cut level of T
T An AH-Tree t Number of data items

k Maximum branch no. for T Bj
i The jth index at ith level of T

N Node set of index tree Dk The kth datum in T

A Available channels A = m+ n Δi The ith sub-tree at level l + 1

m Number of data channels PATH(Bj
i) A path from B1

1 to Bj
i

MAX(Bj
i) Maximum key Bj

i domains n Number of index channels

4 Basic Index Technology

In this section, we describe the index technique used in the Index Generator
modular and an AH-Tree index technique is proposed.

4.1 Tree Construction

First, let us introduce the two-stage construction process of the k-ary AH-
Tree [1,8]. In the first stage, we build an optimal k-ary Huffman tree without

Algorithm 1. AH-Tree Construction

1: Input: D, P ;
2: Output: Node set N of AH-Tree T .
3: Create t leave nodes for di ∈ D and push them into N . Set I = {1, · · · , t}.
4: while |I | > 1 do
5: if

∑k
i=1 pni = min(

∑k
i=1 pxi), where ni, xi ∈ I and no leaves among n1, · · · , nk

and n1, · · · , nk are the leftmost k nodes then
6: Merge n1, · · · , nk as n′ with rn′ =

∑k
i=1 rni (n′ is parent of n1, · · · , nk) ;

7: Insert n′ into N , mark n1, · · · , nk as “processed” and remove them from I ;
8: end if
9: n = n− (k − 1);
10: end while
11: Traverse T , mark each node’s level from the root and get max level L;
12: for l = L → 2 do
13: Find the leftmost index node p on the (l − 1)th level and the leftmost k nodes

n1, · · · , nk on the lth level, and then mark them;
14: Record “p” into field new parent of n1, · · · , nk and “n1, · · · , nk” into array

new children of p without altering their original parent/children;
15: Keep finding new nodes until no unmarked nodes exist in level l;
16: end for
17: Replace parent and children of all nodes with new parent and new children.

Distributed AH-Tree Based Index Technology 181

alphabetic order, where dynamic programming is employed to simplify the al-
gorithm. In the second stage, we adjust the tree in a bottom-up approach to
generate a new tree, which preserves the alphabetic order while keeping the
same cost. The construction process is shown in Alg. 1.

Stage 1 (Line 4 to 10) contains several iterations. During each iteration, we
select k nodes to merge into one new node and then insert it into the original
data sequence to form a new sequence. Recall that k is the number of branches
of the tree. The selected k nodes should satisfy three conditions: (1). There are
no leaf nodes among them; (2). The sum of their frequencies is the minimum
among all k candidate groups; and (3). They should be the leftmost nodes.

We create a new index node as the parent of these k nodes with the frequency
as the sum of the k nodes. Then we insert the new node into the data sequence,
mark the k nodes as processed leaf nodes, and delete them from the sequence.
After that, we start a new iteration and continue the process until there is only
one node left in the sequence, which is the root of the tree. At the end of Stage
1, we produce a tree T ′ without alphabetic order.

Stage 2 (Line 11 to 17) adjusts the tree in a bottom-up, left-right approach
such that every k consecutive nodes on the same level have the same parent.
Finally, an AH-Tree T is constructed. The correctness proof is provided in [17].

Example 1. Throughout the paper, we use a data set in Table 2. The frequency
indicates how many times a datum has been accessed from historical record.

Table 2. Example Data Set

Key 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fre 16 8 30 4 1 12 27 36 41 2 9 15 19 7 23 1

Based on this data set, we apply Alg. 1 to construct the tree. After two stages,
we generate T ′ and T as shown in Fig. 1, respectively.

4.2 Subroutine Dynamic Programming

It is time-consuming to choose k nodes from the data sequence in stage 1. In this
subsection, we design a dynamic programming to solve this problem in O(ki),
where i is the number of nodes in the current iteration and k is the number of
branches in the tree. We first describe the basic idea and derive the recursive
relation, and then verify the correctness in the following part.

Consider the problem of selecting j nodes from sequence [n1, n2, . . . , ni]. There
are only two cases to be considered.

Case 1: There is at least one unselected leaf node in [j+1, . . . , i]. Let f(i, j) be
the minimal weight sum of the j selected nodes in this case.
Case 2: There is no unselected leaf node in [j + 1, . . . , i]. Let g(i, j) be the
minimal weight sum of the j selected nodes in this case.

182 Y. Yang et al.

241

104 147

54 5080 67

24 30 44 36 26 26 24

16 8 17 27

41

11 15 19 7 23 1

5 12 2 9

4 1

level 1

level 2

level 3

level 4

level 5

level 6

level 7

1 2

3

4 5

6

7

8 9

10 11

12 13 14 15 16

241

104 147

54 5080 67

24 30 44 36 26 26 24

16 8 17 27

41

11 15 19 7 23 1

5 12 2 9

4 1

level 1

level 2

level 3

level 4

level 5

level 6

level 7

1 2

3

4 5

6

7

8 9

10 11

12 13 14 15 16

Fig. 1. T ′ (Tree construction after Stage 1) and T ′ (Tree construction after Stage 2)

We now derive the recursive relation. In Case 1, the ith node is unselected,
otherwise no leaf node exists in [j + 1, . . . , i− 1]. There are also two subcases:

1. If the ith node is an index node, then there is at least one unselected leaf
node in [j + 1, . . . , i− 1]. We need to solve the subproblem f(i− 1, j);

2. If the ith node is a leaf node, then there may be no leaf node in [j+1, . . . , i−1].
We have to consider both f(i−1, j) and g(i−1, j) and choose the minimum.

Then the recursive relation for f is shown below:

f(i, j) =

{
f(i− 1, j), if ith node is an index node
min(f(i− 1, j), g(i− 1, j)), if ith node is an unmarked leaf

In Case 2, there are also two subcases:

1. If the ith node was an unselected leaf node, it must be selected now, otherwise
there will be an unselected leaf node in [j + 1, . . . , i], which violates our
assumption of Case 2. So we need to consider the subproblem of g(i−1, j−1).

Distributed AH-Tree Based Index Technology 183

2. If the ith node is an index node, since whether select it or not will not violate
the condition, we have to consider min(g(i − 1, j − 1), g(i− 1, j)).

Hence, the recursive relation for g is as following:

g(i, j) =

{
g(i− 1, j − 1) + ri, if ith node is an unmarked leaf
min(g(i− 1, j − 1) + ri, g(i− 1, j)), if ith node is an index node

After computing f(n, k) and g(n, k), the final result is min(f(n, k), g(n, k)). We
record the choices when generating values in f and g to locate the k nodes.

4.3 Correctness of the Dynamic Programming

We now verify the correctness of our design. The first step is to prove that the
problem has optimal substructure. In the following, we show that both f and g
have optimal substructures. Let’s start with g, which is independent to f .

Lemma 1. (Optimal Substructure of g) Let Si = [d1, d2, . . . , di] be the data
sequence, and Zj = [di1 , . . . , dij] be any optimal solution satisfying the condition
of Case 2 (we also call it an optimal solution of Si for convenience). Then:

1. If di is an unselected leaf node, then Zj−1 is an optimal solution of Si−1;
2. If di is an index node, then Zj−1 is an optimal solution of Si−1 if di = dij ;

otherwise Zj is an optimal solution of Si−1.

Proof. Condition 1. If di is a leaf node, then it is surely in Zj . Suppose Z
′
j−1 =

[d′i1 , . . . , d
′
ij−1

] is an optimal solution of Si−1 with cost less than Zj−1, then we

replace Zj−1 with Z ′
j−1 in Zj to get Z ′

j . Obviously Z ′
j is a solution of Sn whose

cost is less than Zj. It contradicts to the condition that Zj is an optimal solution.
Condition 2. If di is an index node, then there are two cases:

(a) if di = dij , that is, we select the ith node. We can use the same method in
Condition 1 to prove that Zj−1 is an optimal solution of Si−1.
(b) if di �= dij , that is, the i

th node is unselected. Suppose Z ′
j = [d′i1 , d

′
i2 , . . . , d

′
ij],

with a cost less than Zj, is an optimal solution of Si−1. Since the ith node is an
index node, it follows that Z ′

j is also a solution of Si. Then we find a solution
of Si with a cost less than Zj , which contradicts the condition that Zj is an
optimal solution of Si. Hence, Zj is an optimal solution of Si−1.

From above, we conclude that g has optimal substructure. ��
Lemma 2 shows that solving f also contains the optimal substructure.

Lemma 2. (Optimal substructure of f) Let S′
i = [d1, d2, . . . , di] be the sequence,

and Zj = [di1 , di2 , . . . , dij] be any optimal solution that satisfies Case 1 (we also
refer it an optimal solution of S′

i), then Zj is an optimal solution of S′
i−1.

Proof. The proof is divided into two parts:
Part 1. If di is an index node, there is at least one leaf node in [j+1, . . . , i−1].

Thus Zj is a solution of S′
i−1. Let Z

′
j = [d′i1 , d

′
i2 , . . . , d

′
ij] be an optimal solution

of S′
i−1, which costs less than Zj . In the case of Z ′

j , there must be at least one

184 Y. Yang et al.

unselected leaf node in [j+1, . . . , i] since di is an index node. So Z ′
j is a solution

of S′
i. That is, there is another solution which costs less than Zj. Contradiction.

Part 2. di is an unselected leaf node. Since di is unselected, we prove that Zj

is an optimal solution of both S′
i−1 and Si−1. Suppose Z ′

j is an optimal solution
of Si−1 and S′

i−1 with a cost less than Zj . Since di is a leaf node, Z ′
j is also

a solution of S′
i. Thus we find a solution of S′

i that costs less than Zj, which
contradicts the condition. Thus, Zj is an optimal solution of Sj−1 and S′

j−1. ��
Lemma 1 and Lemma 2 imply that both f and g have optimal substructures.

The next two lemmas will complete the final conclusion, in which Lemma 3 can
be directly derived from Lemma 1 and Lemma 2.

Lemma 3. Solving min(f(n, k), g(n, k)) problem has optimal substructure.

Lemma 4. Solving min(f(n, k), g(n, k)) problem has overlapping subproblem.

Proof. Solving min(f(n, k), g(n, k)) involves solving f(n−1, k) and f(n−1, k−
1), which are two overlapping problems. Thus it has overlapping subproblem. ��
Theorem 1. If Zj = [dn1 , . . . , dnk

] is the output of our dynamic programming,
then it satisfies three conditions:

1. There are no leaf nodes among these k nodes.
2. The frequency sum of Zj is the minimum among all possible selection.
3. The k nodes should be the leftmost ones among all the candidates.

Proof. It follows directly from Lemma 3 and Lemma 4. ��

5 Distributed AH-Tree Construction

We have constructed an AH-Tree using dynamic programming in Sec. 4. To
avoid searching from the tree root every time, we employ the distributed index
technique. This technique is first introduced in [3] and applied to B+ tree index.
Then it is applied to AH-Tree index in [9]. The tree is split into replicated part
and non-replicated part. The basic idea is to add the dominating range of all
ancestors into the replicated-part nodes. Thus, from any replicated-part node,
we know which subtree we are looking for, and can directly tune to it.

5.1 Control Table

First we introduce some notations. The index nodes are divided into two parts.
Suppose l is the cut level. The nodes in replicated part are called control index,
while the remaining nodes are named search index. Bj

i denotes the jth index
node of level i, and Dk represents the kth data node in the tree. Note that if the
jth node of level i is a data node, then Bj

i does not exist.
Let Δi denote the i

th subtree below the cut level l, rooted at Bi
l+1. To generate

the distributed index sequence, we use PATH(Bj
i) to represent a path from the

root to Bj
i excluding Bj

i . For instance, PATH(B4
4) in Fig. 1 is [B1

1 , B
2
2 , B

3
3]. In

Distributed AH-Tree Based Index Technology 185

order to broadcast data, we linearize the tree by depth-first search. We use B
j[x]
i

to denote the xth appearance of Bj
i during the process of depth-first search.

For each control index B
j[x]
i , suppose that PATH(B

j[x]
i) = {B1[x1]

1 , B
j2[x2]
2 ,

. . . , B
ji−1[xi−1]
i−1 }, then the control table of B

j[x]
i is shown in Table 3.

Table 3. Format of the Control Table

1 MAX(Δg−1) B
1[1]
1

2 MAX(Bj2
2) B

1[x1+1]
1

.

r MAX(Bjr
r) B

jr−1[xr+1]
r−1

.

i MAX(Bji
i) B

ji−1[xi+1]

i−1

Each entry of the control table contains two elements: the key value and
the control index it hops to. The MAX(Δg−1) in the first entry gives a lower

bound of the dominating range of B
j[x]
i . If the key k we are looking for is less

than MAX(Δg−1), it means that k has been broadcast, so we have to wait for

another round. In this case, we jump to B
1[1]
1 . The key value in the rth entry

gives an upper bound of the dominating range of Bjr
r . The second element gives

a hint of which subtree to hop to in the next step. When the client wants to
retrieve a datum with key greater than this element, it should directly hop to
the control index in this entry. Note that a control index cannot appear more
than k times in one round, but the value of (xr + 1) in the computing process
may be larger than k. In this case the second element of the entry is set to no.

Example 2. The control table of the tree with cut level l = 4 in Fig. 1 is showed
in Table 4.

Table 4. The Control Table of the Example Data Set

B
1[1]
1 no no B

1[1]
2

no no

8 B
1[2]
1

B
1[1]
3

no no

8 B
1[2]
1

3 B
1[2]
2

B
1[1]
4

no no

8 B
1[2]
1

3 B
1[2]
2

2 B
1[2]
3

B
1[2]
4

1 B
1[1]
1

8 B
1[2]
1

3 B
1[2]
2

2 B
1[2]
3

B
1[2]
3

2 B
1[1]
1

8 B
1[2]
1

3 B
1[2]
2

B
1[2]
2

3 B
1[1]
1

8 B
1[2]
1

B
2[1]
3

3 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

B
3[1]
4

3 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

7 B
2[2]
3

B
3[2]
4

6 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

7 B
2[2]
3

B
2[2]
3

7 B
1[1]
1

8 B
1[2]
1

8 B
1[2]
1

B
1[2]
1 8 B

1[1]
1

B
2[1]
2

8 B
1[1]
1

16 no
B

3[1]
3

8 B
1[1]
1

16 no

12 B
2[2]
2

B
3[2]
3

9 B
1[1]
1

16 B
1[2]
1

12 B
2[2]
2

B
6[1]
4

9 B
1[1]
1

16 no

12 B
2[2]
2

12 B
2[2]
2

B
6[2]
4

11 B
1[1]
1

16 no

12 B
2[2]
2

12 B
2[2]
2

B
2[2]
2

12 B
1[1]
1

16 no
B

4[1]
3

12 B
1[1]
1

16 no
16 no

B
7[1]
4

12 B
1[1]
1

16 no
16 no

14 B
4[2]
3

B
7[2]
4

16 B
1[1]
1

16 no
16 no

14 B
4[2]
3

B
4[2]
3

16 B
1[1]
1

16 no
16 no

B
8[1]
4

14 B
1[1]
1

16 no
16 no
16 no

B
8[1]
4

15 B
1[1]
1

16 no
16 no
16 no

Look at the control table of B
6[2]
4 in the lower left corner of the table. Since

it is the second appearance of B6
4 , all the keys less than or equal to 11 have

been broadcasted. Thus if the searching key is less than 11, we jump to B
1[1]
1 .

The second entry means that, if the search key is larger than 16, then there is

186 Y. Yang et al.

no where to go since the largest key is 16. Suppose that we want to search the

key value of 14,then the next hop is B
2[2]
2 , which is exactly the nearest ancestor

dominating 14.

From the control table in Table 4, we find that some control tables, marked as

gray, have redundancy. For example, the control table of B
4[1]
3 , there are two

identical entry 16 no. When the tree becomes large, the redundancy will be as
big as half of the whole control index, which will waste lots of resource. As the
next section shows, almost half of the control tables contains redundancy, so we
will save half of the space if we can eliminate those redundancy.

5.2 Redundancy Elimination for Control Table

In this section, we propose a scheme to eliminate redundancy. We claim that
our scheme is not only suitable for AH-Tree, but also for any other tree-based
indices employing distributed technique. For the balance tree, the scheme can
save 50% of the space for storing the control tables.

Having redundancy in the control table means that for two entries A and
B in the control table, the key value of them are identical. Formally speaking,

suppose the ith and jth entries are redundant in B
j[x]
i ’s control table. It means

that the upper bound of the dominating range of ith and jth ancestor of B
j[x]
i

are the same. Recall that during the process of searching the control table,
after we find the key value of some entry less than the searching key, we jump
immediately. The following entries with the same key value will never be used.
So we can simply discard these following entries. The problem is how to locate
the redundant control tables. A simple case is the rightmost path of the tree.

A

B

C

………

…
MAX(i) I

...
MAX(j) J

...
…

MAX(i) I
...

MAX(j) J
...

Node with redundancyA

B

C
…

MAX(A) I
MAX(B) J

...

IF
MAX(i)=MAX(j)

IF
MAX(A)=MAX(B)

Fig. 2. Example of Redundancy in Control Table

The upper bound of the dominating range of the control index along this path
are all the same. Consider the left part of Fig. 2. Since B is the rightmost child
of A, we have MAX(A) = MAX(B). Thus the control table of C contains
redundancy. Another case maybe less obvious. The control table of a control
index also contains redundancy if one of its ancestors’ control table contains
redundancy, as shown in the right part of Fig. 2. However, all those causes can
be combined into Theorem 2. Before that, we first give two properties of the
control table without proof.

Distributed AH-Tree Based Index Technology 187

Property 1: If index node A and B are ancestors of C, and A is ancestor of
B, then MAX(A) ≥ MAX(B) ≥ MAX(C), and in the control table of C, the
entry of A is in front of that of B.

Property 2: If MAX(A) = MAX(B) and B is a child of A, then B must be
the rightmost child of A and vice versa.

Theorem 2. Let PATH′(Bj[x]
i) = [Bj2

2 , Bj3
3 , . . . , Bji

i], which is PATH(B
j[x]
i)

plus B
j[x]
i then excludes the root of the tree. The control table of B

j[x]
i contains

redundancy if and only if there exits consecutive index nodes B
ja−1

a−1 and Bja
a in

PATH′(Bj[x]
i), such that Bja

a is the rightmost child of B
ja−1

a−1 .

Proof. ⇒. Suppose thatB
ji1
i1

and B
ji2
i2

belong to PATH′(Bj[x]
i) andMAX(B

ji1
i1

)

= MAX(B
ji2
i2

) in the control table of B
j[x]
i . Without loss of generality, we assume

i1 < i2, so B
ji1
i1

is an ancestor of B
ji2
i2

.

(a) If i1 +1 = i2, then B
ji2
i2

is a child of B
ji1
i1

. Since MAX(B
ji1
i1

) = MAX(B
ji2
i2

),

by Property 2 B
ji2
i2

is the rightmost child. Then Bja
a is B

ji2
i2

, B
ja−1

a−1 is B
ji1
i1

.

(b) If i1+1 < i2, then i1 < i1+1 < i2, which impliesMAX(B
ji1
i1

) ≥ MAX(B
ji1+1

i1+1)

≥ MAX(B
ji2
i2

) by Property 1. However, MAX(B
ji1
i1

) = MAX(B
ji2
i2

), so

MAX(B
ji1
i1

) = MAX(B
ji1+1

i1+1). We conclude that B
ji1+1

i1+1 must be the rightmost

child of B
ji1
i1

by Property 2. Let Bja
a be B

ji1+1

i1+1 and B
ja−1

a−1 be B
ji1
i1

.

⇐. Since Bja
a is the rightmost child of B

ja−1

a−1 , we haveMAX(Bja
a)=MAX(B

ja−1

a−1),
then there are redundancy in the control table. ��
By traveling the tree, we can find all the redundant control tables with the help
of the above theorem. Then we eliminate all the redundant entries but the one
with least level. Finally we get a “clear” control tables.

6 Index and Data Allocation

After adding control tables to the index nodes, the final step is to allocate them
onto channels. In this section, we present the scheme of index and data allo-
cation. There are many index allocation method, such as [4,16,18], but they
didn’t employ distributed technique. In this paper, we use the simple pyramid
scheduling scheme to allocate data and indices onto channels.

We define W (B
j[x]
i) as the weight of the index node B

j[x]
i , which denotes the

sum of the probability of all its data descendants, while W (Di) is the access
probability of data Di. Since we apply the same method to allocate index and
data, we only describe data allocation in the paper, which is identical to index
allocation method. The algorithm of data allocation is shown in Alg. 2.

There is a dynamic threshold for each index channel. In Alg. 2, recall that
n is the number of index channels. Suppose that the sum of all the weight is
SUM , then the threshold of the first channel is SUM/n. Thus, we assign indices
to the first index channel one by one until the total weight of all these assigned

188 Y. Yang et al.

Algorithm 2. Data Allocation on Multiple Channels

1: Input: W , the weight set of the data; n, the number of the data channels;
2: Output:C = {C1, C2, . . . , Cn}, the generated data channel set.
3:
4: Sort the data set by frequency in ascending order, results in I = {D1, D2, . . . , Dt};

5: SUM =
∑t

i=1 W (Di);
6: Set ave = 0; p = SUM ; thre = SUM

n
; Ci = ∅; j = 1;

7: for i = 1 to t do
8: if ave ≤ thre then
9: ave = ave+W (Di);
10: Cj = Cj ∪ {Di};
11: else
12: p = p− ave; ave = 0; thre = p

n−j
; j++; i−−;

13: end if
14: end for

indices exceeds the threshold of the first channel. Next, we begin to assign the
remaining indices to the next channel. Instead of having the same threshold for
all the channels, we set the threshold of next channel as

total weight of the remaining indices

the number of remaining index channels

for fairness. Then we repeat the above process until no index is left.

Example 3. We use the data set in sec.4 and apply the allocation scheme to it.
Suppose there are 4 data channels.

(1)In the first iteration, the threshold thre = (16 + 8 + 30 + 4 + 1 + 12 . . . +
23+1)/4 = 62. We assign the data one by one to the first channel until the sum
of frequencies of assigned data exceeds 62.This ends the assignment of the first
channel and the first 6 data are assigned to it.
(2)We calculate the threshold of the second channel, thre = (27 + 36 + 41 +
. . . + 23 + 1)/3 = 60, which the assigned data and channel are not considered
any more. We assign the data one by one to the second channel until the sum of
frequencies of assigned data exceeds 60.

We apply this process until all the data have been assigned. The final allocation
is: 1 : {1, 2, . . . , 5, 6}, 2 : {7, 8, }, 3 : {9, 10, 11, 12}, 4 : {13, 14, 15, 16}.

7 Simulation

In this section, we evaluate the performance of AH-Tree based system in different
conditions. We conduct the performance evaluation on k, l, and m.

Firstly, we model different system conditions by setting all parameters in
Table 5. We let the frequency of each data follow Zipf distribution. The num-
ber data items are set as 10,000 and we generate 20,000 clients requests in

Distributed AH-Tree Based Index Technology 189

our experiments. Performance of our system is mainly measured by two met-
rics: Average Access Latency (AAT) and Average Tuning Time (ATT), both of
which are counted in logical time units. As proposed in [12], each logical time
unit represents the time required to broadcast 1KB data. For index bucket with
1 head segment, k children pointers and 1 default pointer, the size equals to
(k + 2) ∗ 0.1KB, that is to say, it requires (k + 2) ∗ 0.1 time units to visit. Our
experiments are conducted on a computer with Intel(R) Core(TM) i7-3610QM
(2.30GHz) CPU and 4.00 GB memory under Windows 7 version 6.1. The simu-
lator is implemented in Java 1.7.005.

Table 5. Parameters used in our experiments

Parameter Default value Range Meaning

t 10,000 Number of data items
r 20,000 Number of requests
A 10 Number of available channels
k 3 2 to 20 k-ary AH-Tree
l 3 1 to (L-1) cut level, L is the height of tree
m 3 1 to 9 Number of index channels

Secondly, we verify the effectiveness of our index-allocation algorithm, namely,
the pyramid scheduling scheme. We use two different allocation algorithms: the
McNaughton’s Wrap-Around algorithm which simply allocates indices evenly
onto index channels, and our pyramid scheduling algorithm, then compare their
respective performances. From Fig. 3 to Fig. 8, we can conclude that (1). Pyra-
mid index allocation achieves better performance than simple wrap-around al-
gorithm, and (2). the AAL and ATT of our system have closer relationship with
parameter settings of k, l, m than the adopted allocation scheme, because the
shapes of the lines look similar with different allocation schemes.

Thirdly, we compare the performance of AH-Tree based system with B+-Tree
based one. Both of the two systems adopt pyramid index allocation algorithm.
Generally, Fig. 9 to Fig. 14 reveal that AH-Tree performs better than B+-Tree
on both access latency and tuning time for data following Zipf distribution.
In Fig. 10, the ATT declines with the increase of l since more control indices
contribute to faster hopping to targeted data. In the meanwhile, the AAL in
Fig. 9 firstly drops then rises again since too much control indices make the
index sequences in index channels too long, thus lengthen the access latency.
Fig. 11 clearly shows that large k has negative effects on AH-Tree’s performance
and the AAL of AH-Tree based system fluctuates severely with the variation of
k. Therefore, choosing a proper k for AH-Tree based system is crucial for its
user experience. For Zipf distribution, the access latency is mainly determined
by the waiting time for small number of frequently visited indices, so we find
that larger m leads to the decrease of AAL in Fig. 7. On the other hand, the
change of m does not change the structure of index sequence, hence it has no
effects on ATT as shown in Fig. 8.

190 Y. Yang et al.

1 2 3 4 5 6 7 8 9 10 11
0

200

400

600

800

1000

1200

1400

l

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 3. Change of AAL un-
der Zipf distribution w.r.t. l
(k = 3, m = 3)

1 2 3 4 5 6 7 8 9 10 11
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

l

A
ve

ra
ge

 T
un

in
g

T
im

e

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 4. Change of ATT un-
der Zipf distribution w.r.t. l
(k = 3, m = 3)

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

800

900

1000

k

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 5. Change of AAL un-
der Zipf distribution w.r.t.
k (l = 3, m = 3)

2 4 6 8 10 12 14 16 18 20
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

k

A
ve

ra
ge

 T
un

in
g

T
im

e

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 6. Change of ATT un-
der Zipf distribution w.r.t.
k (l = 3,m = 3)

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

m

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 7. Change of AAL
under Zipf distribution
w.r.t.m (k = 3, l = 3)

1 2 3 4 5 6 7 8 9
3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

m

A
ve

ra
ge

 T
un

in
g

T
im

e

Pyramid Algorithm
Wrap−Around Algorithm

Fig. 8. Change of ATT
under Zipf distribution
w.r.t.m (k = 3, l = 3)

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

l

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

AH−Tree
B+−Tree

Fig. 9. Change of AAL un-
der Zipf distribution w.r.t. l
(k = 3,m = 3)

1 2 3 4 5 6 7 8 9
2.5

3

3.5

4

4.5

5

5.5

6

6.5

l

A
ve

ra
ge

 T
un

in
g

T
im

e

AH−Tree
B+−Tree

Fig. 10. Change of ATT
under Zipf distribution
w.r.t. l (k = 3,m = 3)

2 4 6 8 10 12 14 16 18 20

100

200

300

400

500

600

700

800

k

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

AH−Tree
B+−Tree

Fig. 11. Change of AAL
under Zipf distribution
w.r.t. k (l = 3,m = 3)

2 4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

10

11

k

A
ve

ra
ge

 T
un

in
g

T
im

e

AH−Tree
B+−Tree

Fig. 12. Change of ATT
under Zipf distribution
w.r.t. k (l = 3,m = 3)

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

m

A
ve

ra
ge

 A
cc

es
s

La
te

nc
y

AH−Tree
B+−Tree

Fig. 13. Change of AAL
under Zipf distribution
w.r.t.m (k = 3, l = 3)

1 2 3 4 5 6 7 8 9
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

m

A
ve

ra
ge

 T
un

in
g

T
im

e

AH−Tree
B+−Tree

Fig. 14. Change of ATT
under Zipf distribution
w.r.t.m (k = 3, l = 3)

Distributed AH-Tree Based Index Technology 191

8 Conclusion

In this paper, we propose an efficient AH-Tree construction with the help of
dynamic programming. Our algorithm can build arbitrary k-ary AH-Tree index
with bounded tree height in O(kn2) time, where n is the number of data items
to be broadcast. We then modify this tree into a distributed index sequence with
a general and effective control-table shrinking technique to further reduce the
index length and the client searching time. We prove the correctness and com-
plexity of our design theoretically and illustrate the performance of the broadcast
system by numerical experiments. Both theoretical proofs and simulation results
validate the efficiency of our design. To the best of our knowledge, we are the
first to propose the detailed design for k-ary Hu-Tucker AH-Tree construction
with time complexity analysis, which solves a long-time open question since the
beginning of twenty-first’s century.

References

1. Hu, T., Tucker, A.: Optimal computer search trees and variable-length alphabetical
codes. SIAM Journal on Applied Mathematics 21(4), 514–532 (1971)

2. Yao, Y., Tang, X., Lim, E., Sun, A.: An energy-efficient and access latency opti-
mized indexing scheme for wireless data broadcast. IEEE Trans. on Knowledge &
Data Engineering 18(8), 1111–1124 (2006)

3. Imielinski, T., Viswanathan, S., Badrinath, B.: Data on air: Organization and
access. IEEE Trans. on Knowledge & Data Engineering 9(3), 353–372 (1997)

4. Jung, S., Lee, B., Pramanik, S.: A tree-structured index allocation method with
replication over multiple broadcast channels in wireless environments. IEEE Trans.
on Knowledge & Data Engineering 17(3), 311–325 (2005)

5. Xu, J., Lee, W., Tang, X., Gao, Q., Li, S.: An error-resilient and tunable distributed
indexing scheme for wireless data broadcast. IEEE Trans. on Knowledge & Data
Engineering 18(3), 392–404 (2006)

6. Adamic, L., Huberman, B.: Zipf’s law and the internet. Glottometrics 3(1), 143–
150 (2002)

7. Zhong, J., Wu, W., Gao, X., Shi, Y., Yue, X.: Efficient redesign and comparison of
various indexing schemes for wireless data broadcasting. Submitted to Knowledge
and Information Systems (2012)

8. Shivakumar, N., Venkatasubramanian, S.: Efficient indexing for broadcast based
wireless systems. ACM Journal of Mobile Networks and Applications 1(4), 433–446
(1996)

9. Zhong, J., Wu, W., Shi, Y., Gao, X.: Energy-Efficient Tree-Based Indexing Schemes
for Information Retrieval in Wireless Data Broadcast. In: Yu, J.X., Kim, M.H.,
Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 335–351. Springer,
Heidelberg (2011)

10. Zhong, J., Gao, Z., Wu, W., Chen, W., Wang, L.: Multi-channel energy-efficient
hash scheme broadcasting. SEDE, Los Angeles (2012)

11. Gao, X., Shi, Y., Zhong, J., Zhang, X., Wu, W.: Sambox: A smart asynchronous
multi-channel blackbox for b+-tree based data broadcast system under wireless
communication environment. SEDE, Los Angeles (2012)

192 Y. Yang et al.

12. Lu, X., Gao, X., Yang, Y.: Setmes:a scalable and efficient tree-based mechanical
scheme for multi-channel wireless data broadcast. Submitted to ACM ICUIMC
(2013)

13. Sun, W., Liu, P., Wu, J., Qin, Y., Zheng, B.: An automaton-based index scheme for
on-demand XML data broadcast. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S.,
Unland, R., Yoo, J. (eds.) DASFAA 2012, Part II. LNCS, vol. 7239, pp. 96–110.
Springer, Heidelberg (2012)

14. Vlajic, N., Charalambous, C., Makrakis, D.: Wireless data broadcast in systems of
hierarchical cellular organization. In: IEEE International Conference on Commu-
nications, ICC 2003, vol. 3, pp. 1863–1869 (2003)

15. Yee, W., Navathe, S.: Efficient data access to multi-channel broadcast programs. In:
Proceedings of the 12th International Conference on Information and Knowledge
Management, pp. 153–160 (2003)

16. Wang, S., Chen, H.: Tmbt: An efficient index allocation method for multi-channel
data broadcast. In: Advanced Information Networking and Applications Work-
shops, AINAW 2007, vol. 2, pp. 236–242 (2007)

17. Hu, T.: A new proof of the tc algorithm. SIAM Journal on Applied Mathemat-
ics 25(1), 83–94 (1973)

18. Lo, S., Chen, A.: Optimal index and data allocation in multiple broadcast channels.
In: 16th International Conference on Data Engineering, ICDE 2000, pp. 293–302
(2000)

	Distributed AH-Tree Based Index Technologyfor Multi-channel Wireless Data Broadcast
	Introduction
	Related Works
	Problem Formulation and System Architecture
	Basic Index Technology
	Tree Construction
	Subroutine Dynamic Programming
	Correctness of the Dynamic Programming

	Distributed AH-Tree Construction
	Control Table
	Redundancy Elimination for Control Table

	Index and Data Allocation
	Simulation
	Conclusion
	References

